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NUMERICAL SOLUTION OF A SYSTEM OF RANDOM VOLTERRA INTEGRAL

EQUATIONS I: SUCCESSIVE APPROXIMATION METHOD*

N. MEDHIN
Department of Mathematics and Computer Science

Atlanta University
Atlanta, GA 30314

M. SAMBANDHAM
Center for Computational Sciences

Atlanta University and
Department of Mathematics

Morehouse College
Atlanta, GA 30314

Abstract

In this article we discuss successive approximation

method for a system of random Volterra integral equations.

An example is presented to implement the theory. Kolmogorov-

Smirnov test is used to fit a distribution of the solutions.

1. Introduction

The study of random Volterra integral equations and

their applications play an important role in the area of

probabilistic analysis. One of the main reasons is that

integral equations are suitable for numerical treatment.

For a recent survey of approximate solution of random inte-

gral equations we refer to Bharucha-Reid and Christensen

[4]. For the numerical treatment of random integral equa-

tions we refer to Bharucha-Reid [3], Becus (2], Christensen

and Bharucha-Reid [5], Lax (8-10], Tsokes and Padgett (14].

For a detailed survey of analytical and numerical methods

*Supported by U.S. Army Research Contract no. DAAG29-85-G-0109.
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To appear in Conference Volume of the International Conference in Differential.
Equations, University of Alabama, Birmingham, AL.

I-
APPROXIMATE SOLUTION OF RANDOM

DIFFERENTIAL EQUATION*

H. Sambandham
Department of Mathematics

Morehouse College/Atlanta University
Atlanta, GA 30314

and

Negash Medhin
Department of Mathematics and Computer Science

Atlanta University
Atlanta, GA 30314

Abstract V

Chebyshev method for solving random differential equa-
tion is presented. The convergence of the random coefficients
of the Chebyshev series is established. Statistical pro-
perties of the random coefficients are discussed.

1. INTRODUCTION .

In recent years, increasing interest in the numerical
solution of random differential equations has led to the pro-
gressive development of several numerical methods. A large
number of papers have appeared in the literature containing
approximate solutions of random differential equations. For
Newton's method, successive approximations, perturbation
methods, method of moments, finite element methods and other I
methods on the approximate solution of random equations we
refer to Bharucha-Reid 111. Numerical methods of random poly-
noiials can be found in Bharucha-Reid and Sambandham (21.
For a short and elegant note on several of these methods we
also refer to Lax (9, 101. Some analytical and numerical
estimates on error estimates of stochastic differential
equations are presented in Ladde et al. (6-81. For other
interesting numerical techniques we refer to Boyce (31 and
(111. Numerical treatment of Ito equations can be found in
Klauder and Petersen (4], Rumelin [121 and Taley [15]. We
notice that most of these numerical methods are successful

*Research supported by U.S. Army Research Office, Grant No.
DAAG 29-85-G-0109.
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*A Mixed Min-Max Control Problem
Governed by Integral Equations

Negash G. Medhin
Department of Mathematics and Computer Science

Atlanta University
Atlanta, GA 30314

A mixed min-max control problem is considered using

relaxed controls. Mixed min-max problems governed by dif-

ferential equations have been considered using Dubovitskii

and Milyutin Theory and Convex Analysis [6]. Here we use

relaxed controls and penalization to deal with a process

governed by integral equations. We use a technique employed

by us in dealing with control problems governed by integral

4%

equations [2).
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NUMERICAL SOLUTIONS TO STOCHASTIC DIFFERENCE EQUATIONS*

G. S. Ladde H. Sambandham
Department of Mathematics Center for Computational Sciences
University of Texas at Arlington Atlanta University and
Arlington, TX Department of Mathematics

Morehouse College
Atlanta, GA

ABSTRACT

Statistical properties of the numerical solutions of random difference
equations are estimated. By an application of variation of constant
formula, error estimates between random solutions and smooth solutions
(deterministic solution) are discussed.'-

1. INTRODUCTION

Numerical solutions of mathematical models of dynamical systems in applied

mathematics demand a fair knowledge of stochastic difference equations.

That is stochastic difference equations where some of the variables can

change stochastically in time. More recently Ladde and Sambandham [5]

developed several random difference inequalities which are very powerful

tools to study stability properties of stochastic difference equations.

By an application of variation of constant formula, error estimates

between stochastic systems and the respective deterministic (smooth) sys-

tems are discussed in [6]. These estimates provide statistical properties

of the upper bound for the error estimates. For related results we refer

to Fai Ma and Caughey (2,3,4], Mann and Wald [7], Deller (1].

We organize our article as follows. In Section 2 we present the

analytical upper bounds for error estimates. In Section 3 we include a

few discussions on the numerical solutions. In addition, we have pre-

sented a few tables and figures to illustrate the behavior of the error

between the mean of the random solutions and deterministic solutions. We

*Research supported by U.S. Army Research Office Grant Numbers

DAAG 29-85-G-0109 and DAAG 29-84-G-0060.
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NUMERICAL SOLUTION TO A SYSTEM OF
RANDOM VOLTERRA INTEGRAL EQUATIONS*

1 2 .3N. Medhin I , M. Sambandham and C. K. Zoltani

Abstract

In this article we present a brief sum-
mary of the numerical solution of a system
of random Volterra integral equations. The
methods we use are (i) Newton's method and
(ii) successive approximation method. Based
on the simulation, we discuss the mean and
variance of the solution of a system of random Ie
Volterra integral equations. eM

*Supported by U.S. Army Research Contract No. DAAG29-85-G-0109.

iDepartment of Mathematics and Computer Science, Atlanta
University, Atlanta, GA 30314.

2Center for Computational Sciences, Atlanta University,
Atlanta, GA 30314; Department of Mathematics, Morehouse
College, Atlanta, GA 30314.

3Ignition and Combustion Branch, U.S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland 21005.
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Optimal Processes Governed by Integral Equations

with Unilateral Constraint

Negash G. Medhin*

An optimal process with unilateral constraint is con-

sidered using relaxed controls. Existence of optimal

control is automatic. Further, problems with linear and

certain quadratic cost functions with linear integral and

state constraints are such that the controls are actually

ordinary, i.e., bounded measurable functions. In addition,

if the control set is a convex polyhedron the optimal con-

trols take their values in the vertices of the polyhedron.

Control processes governed by integral equations have been

considered in (2]. However, in [2] existence is not shown

for the general problem and optimality conditions are not

available for the problem when state constraints are pre-

sent. Furthermore, the work in [2] has some errors as

pointed out in [3]. Finally we point out the basic idea in

our approach in this paper-is the same as in [6].

*Associate Professor of Mathematics, Atlanta University,
Atlanta, GA 30314. Research supported by U.S. Army Research
Office Grant #DAAG-29-85-G-0109.
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*A Mixed Min-Max Control Problem
Governed by Integral Equations

Negash G. Medhin
Department of Mathematics and Computer Science

Atlanta University
Atlanta, GA 30314

A mixed min-max control problem is considered using
relaxed controls. Mixed min-max problems governed by dif-

ferential equations have been considered using Dubovitskii

and Milyutin Theory and Convex Analysis (6]. Here we use

relaxed controls and penalization to deal with a process

governed by integral equations. We use a technique employed

by us in dealing with control problems governed by integral

equations [2).

'pD
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Mixed Min-Max Optimization Problem with Restrictions *

Negash G. Medhin M. Sambandham
Department of Mathematics Department of Mathematics

and Computer Science and Computer Science
Atlanta University Atlanta University and

Atlanta, GA 30314 Morehouse College
Atlanta, GA 30314

Introduction

We consider a min-max optimization problem using relaxed

controls. Such problems have been considered using

Dubovitskii and Milyutin Theory and convex analysis [5].

We reformulate the problem where a unilateral constraint is

added. We deal with the reformulated problem using penali-

zation [21, [3]. Our procedure produces more optimality

conditions than [51 and also more insight into [5]. In the

special case where the controls appear linearly and the con-

trol sets are convex polyhedra the relaxed controls are

ordinary controls taking values in the vertices of the

polyhedra. Finally, we present examples where we demonstrate

how the optimal controls and trajectories could be calculated -4

and some that are numerically worked out.

4.

KEY WORDS: Relaxed controls, unilateral constraint, J.

penalization -

* Supported by U.S. Army Research Contract No. DAAG29- ,
85-G-0109.
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NUMERICAL SOLUTION TO A SYSTEM OF
RANDOM VOLTERRA INTEGRAL EQUATIONS*

N. Medhin1 , M. Sa.bandham 2 and C. K. Zoltani3  P

Abstract .

In this article we present a brief sum-
mary of the numerical solution of a system *.

of random Volterra integral equations. The
methods we use are (i) Newton's method and
(ii) successive approximation method. Based
on the simulation, we discuss the mean and
variance of the solution of a system of random
Volterra integral equations.

I-

".

.'

*Supported by U.S. Army Research Contract No. DAAG29-85-G-0109.

Department of Mathematics and Computer Science, Atlanta
University, Atlanta, GA 30314.

2Center for Computational Sciences, Atlanta University,
Atlanta, GA 30314; Department of Mathematics, Morehouse
College, Atlanta, GA 30314.

3Ignition and Combustion Branch, U.S. Army Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland 21005.
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APPROXIMATE SOLUTION OF RANDOM

CTFFERENTIA.L EQUATION*

M. Sambandham
Department of Mathematics

Morehouse College/Atlanta University
Atlanta, GA 30314

and

Negash Medhin
Department of Mathematics and Computer Science

Atlanta University
Atlanta, GA 30314

Abstract

Chebyshev method for solving random differential equa-
tion is presented. The convergence of the random coefficients
of the Chebyshev series is established. Statistical pro-
perties of the random coefficients are discussed. Cf.

1. INTRODUCTION

In recent years, increasing interest in the numerical
solution of random differential equations has led to the pro- 'C

gressive development of several numerical methods. A large
number of papers have appeared in the literature containing
approximate solutions of random differential equations. For
Newton's method, successive approximations, perturbation
methods, method of moments, finite element methods and other
methods on the approximate solution of random equations we
refer to Bharucha-Reid (1]. Numerical methods of random poly-
nomials can be found in Bharucha-Reid and Sambandham [2].
For a short and elegant note on several of these methods we
also refer to Lax [9, 10]. Some analytical and numerical
estimates on error estimates of stochastic differential
equations are presented in Ladde et al. [6-8]. For other
interesting numerical techniques we refer to Boyce (31 and
[11]. Numerical treatment of Ito equations can be found in
Klauder and Petersen [4], Rumelin [121 and Taley [15]. We
notice that most of these numerical methods are successful

*Research supported by U.S. Army Research Office, Grant No.
DAAG 29-85-G-0109.
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A METHOD FOR THE NUMERICAL SOLUTION OF

RANDOM CAUCHY SINGULAR INTEGRAL EQUATION

M. Sambandham T. S. Srivatsan
Department of Mathematics Georgia Institute of
Atlanta University and Technology
Morehouse College Atlanta, GA 30332
Atlanta, GA 30314

and

K. B. Bota
Department of Physics
Atlanta University
Atlanta, GA 30314

ABSTRACT

The solution of several elasticity problems, and parti- a-

cularly crack problems, can be reduced to the solution of

one-dimensional singular integral equations with a Cauchy-

type kernel. In this paper, we present a method for the

numerical solution of a random singular integral equation

of the Cauchy-type. To illustrate this method, it is applied

to the random singular integral equation that arises in the

problem of periodic array of straight cracks inside an

infinite isotropic elastic medium and subjected to random

pressure distribution along the crack edges. The statistical

properties of the random solution are evaluated numerically,

and used to determine the stress intensity factor at the

crack tips. Results of this study highlight the advantage of

using this method to solve a random Cauchy-type singular

*Research supported by U.S. Army Research Office under Grant
numbers DAAG 29-85-G-0109 and National Science Foundation
Grant number PRM-8215949.
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integral equation. The method is applied to the crack problem

subjected to different forcing functions.

1. INTRODUCTION

In recent years, an unprecedented widespread interest

in the numerical solution of singular integral equations of -

the Cauchy-type has resulted in the development of several

numerical methods [1-5] besides stimulating a mathematical

interest in their numerical analysis. Since the pioneering

work by Erdogan [11 in 1969 and subsequently by Erdogan and

co-workers [31, a large number of papers have appeared in the

literature concerning singular integral equations that arise

in several fields of mathematical physics and engineering.

The solution methods developed have aimed at reducing the

singular integral equation to a system of linear algebraic

equations which can be easily solved to give an approximate ..

expression for the solution of a singular integral equation or

solutions in the case of a system of singular integral equa-

tions.

Several of the numerical methods developed over the years

were found to have disadvantages due to their inherent com-

plexity, low degree of accuracy and limitations as regards the

classes of singular integral equations to which they were

applicable. It is known that numerical solutions of Fredhoim

integral equations by reduction to a system of linear equations.

could be extended to the case of Cauchy singular integral

% % N %
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3

equations (CSIEs), that is to the case when the kernels of

the Fredholm integral equations have Cauchy-type singularities.

Since Cauchy-type singular integral equations on closed con-

tours have been treated elsewhere [7, 81, in this paper we

confine our attention to equations on intervals (a,b) of the

real line, which may be either finite or infinite. In parti-

cular, we consider linear equations since the theory for these

is fairly complete and well developed. The most frequently

used technique for the numerical solution of linear singular

integral equations consists in approximating the integral

terms by using an approximate numerical integration rule

and applying the singular integral equation at appropriately

selected collocation points [2-4, 9]. One determination of

the unknown function at the abscissas used, the function is

approximated along the whole integration interval [10 ].

A wide body of literature pertaining to the numerical

solution of singular integral equations of the deterministic

type is succintly summarized by Ergodan, et al. [3], Golberg

[111, and Theocaris [6]. In referring to singular integral

equations, Erdogan, Golberg and Theocaris in their articles

imply Cauchy-type singular integrals and Cauchy-type singular

integral equations. We refer to Bharucha-Reid and Bharucha-

Reid and Christensen [12, 13) for surveys of the different

analytical methods for the solution of random integral equa-

tions. Most recently, Christensen and Bharucha-Reid [141

developed numerical solution procedures for Fredholm equations

deelpe procedures..........V*d~
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with random kernels, random right hand side or both and for

Fredholm equations with random degenerate kernels [15]. The

Cauchy-type singular integral equations which arise fre-

quently in the fields of aerodynamics, hydrodynamics, solid

mechanics, elasticity and fracture mechanics, are closely

related to Fredholm-type equations. There exists a pragmatic

need to develop numerical techniques in order to be able to

study the characteristics of the random singular integral

equations. The rationale for this study was to extend the

concept for the solution of random Fredholm integral equations

[14-16], to the solution of random singular integral equations

of the Cauchy-type that arise in crack problems in the

classical theory of elasticity. In particular, we consider

the problem of an array of periodic cracks inside an infinite
1P

isotropic elastic medium and subjected to random pressure J.

distribution along the crack edges, i.e., the case of a

random forcing function. The statistical properties of the

solution are evaluated and the results obtained for the random

equation are compared with those of the deterministic equa-

tion. Further we also discuss the distribution of the stress .

intensity factor for different sample sizes. :

2. SINGULAR INTEGRAL EQUATIONS

Consider the singular integral equation of the form

11. 1

(2.1) (t) dt + k(x,t);(t)dt = f(x), -1 < x <i,
-)t - x

-I -i



1

5

where k(x,t) is a regular kernel. ¢(t) is the unknown func-

tion proportional to the crack tip opening displacement and

f(x) is the known function representing pressure distribu-

tion along the crack.

Let g(t) = c(t)/z(t), where z(t) = (l-t2 )-1/2 and

1
(2.2) j p(t)dt = 0.

-1

We consider (2.1) together with (2.2) and replace g(t) by a

new unknown function G(x) defined by the first integral of

(2.1), that is,

~1

(2.3) G(x) 1 (l-t2 )1/2 g(t) dx, -1 < x < 1.
-l t -x
-i

Since g(t) satisfies (2.2), we can express g(t) in terms of

G(x) by

1 2 1/2 G(Y)(2.4) g(t) (-Yd- t "Y

By an application of (2.3) and (2.4), we can write (2.1) in

the form

1 21/2
(2.5) G(x) + / (l-y ) K(y,x)G(y)dy = f(x) -1 < x < 1,

-1

where

2 )/2 K(t,x)(2.6) K(y,x) 1 (1-t t -y

We remark that (2.5) is another form of (2.1). The equation

(2.5) is Fredholm equation of second type and its numerical

solution can be found by quadrature method.
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The probabilistic analogue of (2.5) is the random equa-

tion. We call an equation random if certain components such

as coefficients, kernels, nonhomogeneous terms or forcing

functions and initial and or boundary data are random func-

tions. The random version of (2.5) is of the form

1
(2.7) G(x,w) + f (l-y2) K(y,x,w)G(xw)dy f(x,w)

p -1
-1 < x < 1

where K(y,x,w) is the random kernel and f(x,w) is the random

forcing term. The parameter w is an element of a given

probability space (S,A,P). Here G(x,w) is the random func-

tion referred to as the solution or output. For numerical

solution of (2.7) we refer to [14, 15, 16].

In this article we consider a periodic array of cracks

along a straight line in an infinite isotropic elastic medium

under plane strain or generalized plane stress. The length

of each crack is assumed to be '2a' and the period of the

array is 'b'. For the case of a constant compressive loading

distribution along the crack edges, Ioakimidis [171 found the

singular integral equation to be

a 2  1/2 - a(t-x)
(2.8) a (1-t) cot( )g(t)dt f(x) -i < x < 1

b

which is of the form (2.1) with

a -a (t-x) 1
(2.9) k(t,x) = cot(

where cracks are assumed to be loaded by constant compressive

Z!p..

..-,. . .... . .,, .. ... . . .,.... . - .- .. . . ,. ,,.. ..... , .,. .. , . .. . .. . ..... ,..,. . . - .. . ...... . . .?,.. -. -. -, < -. .,....... 9...
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loading distribution f(x) along both crack edges. If theV

loading distribution f(x) is random, then (2.8) is a random

singular integral equation. If we denote random loading

distribution by f(x,w) then the random version of (2.8) is

(2.10) f(1-t 2)1 cot( br~tx )g(t,c.)dt =f(x,w) -1 < x <1

b• b-1.-

Equation (2.10) together with (2.2) can be solved numerically

by methods suggested in [12-17].

3. NUMERICAL TREATMENT

In this section we discuss the numerical solution of

(2.10). We assume the ratio a/b = .4 and the successive

cracks lie close to each other. We denote the value of the .

stress intensity factor by K(±I,w) at the crack tips t = ±I.

It is given by

(3.1) K(-lI') = ±g(±l',)

N
~ L (1 ±xk)G(XkU).

k=l

where x k are suitable nodes

x = cos(k-0.5)

k N

which we use to solve (2.7). The unknown random function I

g(x,w) in (2.10) is evaluated at different pressure distri-

butions along the crack edges, namely,

Example 3.1. f(xw) E N(l, )

.

',



Example 3.2. f(x,-) t N(ex,3 2 )

x 2 2x
Example 3.3. f(x, ) E N(e ,2X e

A sample of 5000 standard normal random numbers are

generated from IMSL routines (GGNML). The resulting random !

numbers are used to generate the random input functions,
:J.

namely, the random pressure distributions in the manner

described above. For each random input function, equation

(2.7) and hence equation (2.10) is solved numerically to

obtain the random output function, and the stress intensity

factor. At the crack tips, K(±l,w) are computed based on the

relationship in equation (3.1).

4. RESULTS AND DISCUSSION

Accurate estimates of the stress intensity factor at the

crack tips under more realistic pressure distributions is

essential for the reliable prediction of fatigue crack growth

rates in structural members. Several analytical techniques

are presently available to obtain solutions to random

Cauchy-type singular integral equations that arise in crack

problems. Most of these numerical techniques for obtaining

the stress intensity factors for crack and elasticity prob-

lems have been concerned with pressure distributions that are

purely deterministic in nature.

In dealing with random equations, the main objectives

to be concerned with are: (1) determination of the statisti-

cal properties of the random solution such as its expectation,

5-".
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variance and higher moments; (2) to establish the relation-

ship between the expected solution of the random equation

and the solution of the deterministic equation or the mean

solution (181; (3) determining the distribution of the solu-

tions, and (4) discussing the limiting properties of the

solutions. Of particular interest is the relationship

between the statistical properties of the solution and the 
• V

statistical properties of the random input function intro-

duced into the equation. Table I-V summarize the statisti-

cal properties of K(±l,w).

The distribution of stress intensity factor K(:l,w)

for the functions f(x,w) are shown in Figures 1-30. These V
V

figures show that as the value of N increases, the distribu-

tion of K(±l,w) is approximately normal with E[K(±l,w)] being

the solution of the mean equation. It is observed that as

the value of N increases, the distribution of the stress

intensity factor K(±l,w) is normal as long as the forcing

function f(x,w) is normal.

5. CONCLUSIONS

1. The foregoing analysis demonstrates a fairly simple yet %

useful method for the solution of random Cauchy-type

singular integral equation that arises in a crack prob-

lem in the classical theory of elasticity. The solu-

tion of the random equation helps in the accurate

eevaluation of the stress intensity factor at the crack

.9

I
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tips under more realistic input or forcing functions.

2. The distributions of the stress intensity factors

K(-I, ) are approximately normal when the forcing func-

tions are normal.

3. The results of this study highlight the influence of the

nature of the random input function on the stress

intensity factor.

1*
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2A

f~x,.) E N1,0.0

Mea of vraneo

7 16652 0006

5000 2 1.634564 0.001065
3 1.575470 0.0008960
5 1.563709 0.000866
7 1.56605 0.001069
9 1.566708 0.000910

1000 2 1.63569 0.0010798
3 1.575410 0.000960
5 1.563799 0.000931
7 1.567005 0.000093
9 1.565704 0.000940

2000 2 1.636093 0.0010988
3 1.575890 0.000962
5 1.564721 0.000965
7 1.566255 0.000993
9 1.564965 0.0009874

3000 2 1.637003 0.001088
3 1.575030 0.000962
5 1.564715 0.000977
7 1.566254 0.000990
9 1.564917 0.0009743

4000 2 1.63676 0.001089
3 1.5751527 0.000984
5 1.565015 0.000977
7 1.566710 0.000985
9 1.564917 0.000983
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f(x,2) E N(ex ,0.022

Mean of Variance of a

Sample Size N K(I,A K1,)

500 2 2.567233 0.000985
3 2.548983 0.000967
5 2.538348 0.000880
7 2.539721 0.000997
9 2.539926 0.001007S

1000 2 2.566281 0.001026
3 2.548836 0.001010
5 2.537966 0.000897
7 2.540643 0.000933
9 2.539931 0.000971

2000 2 2.566361 0.001063
3 2.548886 0.001033

5 2.538958 0.000955
* 7 2.540021 0.000937
* 9 2.539534 0.000992

3000 2 2.566199 0.001082
3 2.549063 0.001023
5 2.539601 0.000987
7 2.539973 0.000944
9 2.539349 0.000992

4000 2 2.565732 0.001077
3 2.548748 0.001026
5 2.539587 0.000976
7 2.539796 0.000949
9 2.539454 0.001007

5000 2 2.565745 0.001069
3 2.548838 0.001015
5 2.539710 0.000975
7 2.539714 0.000955
9 2.539338 0.001008
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TABLE III

f (X, ) N (e,0. 02 2e 2

Mean of Variance of
Sample Size N K(l,w) K(l,w)

500 2 2.565219 0.002773
3 2.544691 0.002617 N
5 2.539554 0.0029604
7 2.541145 0.002661
7 2.542362 0.002784

1000 2 2.565728 0.002727
3 2.546564 0.002680
5 2.541254 0.002728 d

7 2.541461 0.002704
9 2.542656 0.002535

2000 2 2.565767 0.002784
3 2.548370 0.002618
5 2.539482 0.002647
7 2.540158 0.002643
9 2.540600 0.002528

3000 2 2.565145 0.002694
3 2.547493 0.002589
5 2.539537 0.002630
7 2.539658 0.002603
9 2.541302 0.002609

4000 2 2.565149 0.002677
3 2.547726 0.002611
5 2.539973 0.002641
7 2.538959 0.002602
9 2.540734 0.002614

5000 2 2.564995 0.002644
3 2.547745 0.002592
5 2.539966 0.002628 0
7 2.539020 0.002585
9 2.540420 0.002630

** %* A* ~ * **. * * * . * *
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TABLE IV

-x 2
f (X,) N (e ,0.02

Mean of Variance of
Sample Size N K (--I, w) K(-1,w)

500 2 1.562386 0.000996
3 1.478523 0.001107 5

5 1.465161 0.000979 -

7 1.466776 0.001004
9 1.469071 0.000901

1000 2 1.563262 0.001020
3 1.479762 0.001065
5 1.465880 0.001015
7 1.466557 0.000990t

9 1.468161 0.000939

2000 2 1.563492 0.001015
3 1.479095 0.000998
5 1.466543 0.001003
7 1.466125 0.000990
9 1.468237 0.000972

3000 2 1.562768 0.001029
3 1.478868 0.000993
5 1.467130 0.000992
7 1.466727 0.000992
9 1.468084 0.000990

4000 2 1.562527 0.001035
3 1.478661 0.000985
5 1.467698 0.000993
7 1.466606 0.000992
9 1.467634 0.000986

5000 2 1.562371 0.001046
3 1.478330 0.000980
5 1.467851 0.000987
7 1.466590 0.000985
9 1.467648 0.000978
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TABLE V

f(x,,) N(e - x  0.0 2
2 e 2 x)

Mean of Variance of
Sample Size N K(-I,w) K(-l, )

500 2 1.563375 0.000957
3 1.480107 0.000776
5 1.468341 0.000749
7 1.467878 0.000831
9 1.467650 0.000818 p

1000 2 1.562688 0.000943
3 1.479829 0.000833
5 1.467521 0.000833
7 1.466508 0.000835
9 1.468472 0.000826

2000 2 1.561791 0.000963
3 1.479141 0.000852

5 1.467389 0.000858
7 1.467030 0.000867
9 1.467370 0.000843

3000 2 1.561813 0.000973
3 1.478927 0.000861
5 1.467764 0.000881
7 1.466812 0.000870

9 1.467162 0.000861

4000 2 1.562072 0.000976
3 1.478724 0.000876
5 1.467863 0.000880
7 1.467345 0.000872
9 1.467029 0.000851

5000 1.561947 0.000975
1.478948 0.000869
1.467711 0.000880
1.467042 0.000875
1.466858 0.000842

#..~

S<



16 .

N-2 SAMPLE SIZE 500 N=2 SAMPLE SIZE 50000.2 0.2"
0.2 c N(1,0.02 2 f(x,w) € N(1,0.02 2)

zz

4. u.1 ~0.1

0.0 T 0.0
1.40 1.65 1.90 1.40 1.65 1.90K(1. w.) K(1. w,)

Fig. 1. Fig. 2.

N=7 SAMPLE SIZE 500 N=7 SAMPLE SIZE 5000

0.2 0.2
2 2

f(x,w) E N(1,0.02 f (X, N (1,0. 02
z LAJ

( 0.1 0.1
tA.

oL.o

0.0 VLI .0
1.40 1.65 1.90 1.40 1.65 1.90

K(l, w) K(l.u )

Fig. 3. Fig. 4.

N=11 SAMPLE SIZE 500 N=11 SAMPLE SIZE 5000
0.2 0.2

.f(x, ) c N(1,0.02 f(x, ) N(1,0.02 )

*z z

La 0Li
IA-

w w

0.0 4-A r0.0 Z-
1.40 1.65 1.90 1.40 1.65 1.90

K(1. w) K(l. w) "

Fig. 5. Fig. 6. .a
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N-2 SAMPLE SIZE 5000.2 N-2 SAMPLE SIZE 50000.20.2
x0.2

f(x,w) £ N(e ,0.02 ) f(X,w) f N(e,0.0 22)
z

~0.1 uO.

0.0 0.0
2.30 2.55 2.80' 2.30 2.55 2.80K W, ) K(l. ,w

Fig. 7. Fig. a.

.1i

N=7 SAMPLE SIZE 500 Nm7 SAMPLE SIZE 5000
0.2 0.2

f(x,w) c N(eX 0.022) f(x,W) N(eX 0.02
z z

O 0
S0.10.

L,)

0.0 0.0
2.30 2.55 2.80 2.30 2.55 2.80

K(l. W) K(1. w)

Fig. 9. Fig. 10.

N-11 SAMPLE SIZE 500 N-11 SAMPLE SIZE 5000
0.2 0.2

x 2 x 2f(xw) E N(e ,0.022) > f(x,w) c N(e ,0.02
Q Q

z z

0.0 0.0 1 ,.%
2.30 2.55 2.80 2.30 2.55 2.80K(l. w) K(l. w)

Fig. 11. Fig. 12.

"*t . . . ' -' " v ' . I . P - - ' = -- J .," =, , / . ', v" P _ ,," ,' _ " . 4 " - - . , . =, , • , , . , . . .
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N-2 SAMPLE SIZE 500 N-2 SAMPLE SIZE 5000
0.2 0.2

x 2 2x x 22f(x, W) N(e, 0.02 e I f(x,w) ( N(e ,0.022ex)

* z z

cr Ot Lr .1

0.0 0.0-
2.30 2.55 2.80 2.30 2.55 2.80

K(1. w) K(l. w)

Fig. 13. Fig. 14.

N-7 SAMPLE SIZE 500 N-7 SAMPLE SIZE 5000
0.2 0.2

>. f(x,w) E N(eX,0.02 2 e 2 x) > f(x,w) e N(eX ,0.02 2 e 2 X)

a 0.7 . 0.1z -:
w w

0.0- 0.0-
2.30 2.55 2.80 2.30 2.55 2.80

K(1, w) K(1. w)

Fig. 15. Fig. 16.

N-11 SAMPLE SIZE 500 N=11 SAMPLE SIZE 5000
0.2 22x 0.2

f(x,w) c N(eX ,o. 02 e) f (x,w) N(X,o. O2
2 2 X)

0.01 ,0.0
L&

0.0--T 0.0 28
2.30 2.55 2.80 2.30 2.55 2.80

K(1. K(I. w)

Fig. 17. Fig. 18.

• •
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4%

N-2 SAMPLE SIZE 500 N -2 SAMPLE SIZE 500
0.2 0.2

-x 2 1 2
f(XW) I Ne- ,0.02 ) f(x,w) f N(eX, 0.02

z z

La

50 .8 0.01.30 1.55 1.80 1.30 1.55 1.80
K(-1. )K(-1. w

Fig. i9. Fig. 20.

N-7 SAMPLE SIZE 500 N-7 SAMPLE SIZE 5000
0.2 0.2 P

f(x,W) - N(e-X,0.022) > f(x,w) E N(e'X 0.022)

z zLJ tL °%

L.A
Ir0.1 m 0.1
LX. L0.

,,,

0.0 0. 0
1.30 1.55 1.80 1.30 1.55 1.80

K(-1. w ) K(- ), w) ".

Fig. 21. Fig. 22.

N-11 SAMPLE SIZE 500 N-11 SAMPLE SIZE 5000
0.2 0.2

f(x,w) N(e X,0.022) f(x,w) N N(e- x0.022)

z z

0.] ~0.1S

0.0 0.0 --
1.30 1.55 1.80 1.30 1.55 18

K(-r. ) K(- .2)4
Pig. 23. Fig. 24. ,

.1
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N-2 SAMPLE SIZE 500 N-2 SAMPLE SIZE 5000
0.2 0.2

- f (x,) E N(e-x,0.02 2e -2x f(x,w) e N(eX 0.02e
Q z
z w

0.1 ..1

0.0 0.0"

1.30 1.55 1.80 1.30 1.55 1.80K(-I.l (-.u

Fig. 25. Fig. 26. €,
',

N-7 SAMPLE SIZE 500 N=7 SAMPLE SIZE 5000

0.2 0.2

2-xx .2-2xf(x,w) N(e-x 0022 -2x f(x,) N(e-0.02ee (e 0.02
z zZ w

.1 0.1 "

0.0 - 0.0

1.30 1.55 1.80 1.30 1.55 1.80

Fig. 27. Fig. 28.

N=11 SAMPLE SIZE 500 N-11 SAMPLE SIZE 5000

0.2 0.2

N-x 2-2x ~ 4 *x 2-2 -

f(x,w) c N ,(e-0.02 e f) x N(e,0.02 e x)

K((..) K -0

z ..

W 0.1 0L.1

0.0o 0.0

1.30 1.55 1.80 1.30 1.55 18

K(- 1. w) K-.

Fig. 29. Fig. 30.
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ABSTRACT

In this paper, we present a method for the numrical solution of random

Low's integral equation. The technique involves a Chebyshev series approxima-

tioa, the coefficients of which are the solutions of a system of random linear

equations. The statistical properties of the random solution are evaluated

numrically and used to determine the distribution of the random coefficients.

We express these distributions in histograms.
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algebras AL. L a line of Y. The combinatorial also discussed. We illustrate our analy-
tical techniques through computer algori-

properties of the (0,1) - matrices (x which~thms and numerical results. These results

span these algebras are transferred to a will highlight the error involved if one
polynomial ring R = klx I .... x N]/i, I a certain uses deterministic AR models insted of

homogeneous ideal. R is noetherian of Krull stochastic AR models.

dimension n+l in which certain statements about
the prime ideals of R are equivalent to M.S.kMBANDHA.M
statements about the collineations of -. The Department of Mathematics
Krull intersection theorem provides an interesting Morehouse College/ Atlanta University
topology for R when r admits no collineation. Atlanta GA 30314

John L. Hayden K,
Bowling Green State University K.B• BOTA
Department of athematics Department of Physics

Depatmet o MatemaicsAt lanta University
Bowling Green, OH 43403 Atlanta GAv30314

Atlanta GA 30314.

#58 (C/P Session 1; Wed. 12:OONOON) #90 (C/P Session 13; Fri. 5:00PM)

Family of Algorithms for the Graph Bisection Discriminative Optimization .
Problem

The extentions to the simplex algorithm
71e Graph Bisection Problem, GBP, is the problem required by Goal Programming (GP) in-
of partitioning the vertex set of a given graph spire a further generalization on a
into two subsets of the same size (within one broader class of mixed binary problems
element) so that the number of edges cut is with a structure among goal functions.
=inimized.
We present a family of algorithms for GBP that The Discriminative Optimization (DO)
implements the idea of a restricted branch and is defined in it's generality and the
bound method. score of optimization methods like; Set- V..
it is shown that for every constant X>O, there is up cost, Goal Tree Programming, Aggrega-
in algorithm with running time of O(cn) (c<2), tive Goal Programming, Linear Goal Prog-
which performs as an exact algorithm on the set of ramming, etc. are shown to be particular
graphs with n vertices and &Xn edges. cases of the same scheme. Correspondig-
We present the results of computer simulations ly, simplex-based solution algorithms
with the algorithms and discuss several conjec- for those problems, and even for the
tures which are based on these results. Linear Programming, can be obtained as

implementations of the general solution

Mark K. Goldberg process.

Department of Computer Science
Rensselaer Polytechnic Institute Dr. Pawel Radzikowski
rov, New York 12180-3590 Seton Hall University

School of Business
South Orange, NJ 07079

'39 (C/? Session 8; Thu. 12:OONOON)

APPROXIM4ATION TO AuTOREGRESIVE MODEL WITH
STCCHASTIC CCEFFICIENTS '91 (C/P Sassion 15 Fri. 5:00PM)

A Model for Cannibal.sm

An autoregressive (AR) model with stochas-
tic cofficients is generally modelled by Many species of insects and fish practice %

deterministic AR model where stochastic cannibalism, presumably due to selective

coefficients are rerlaced by the mean of pr-ssure toward this behavior. This paper

the stochastic coefficients. It has been presents a system of non-linear ODE's which

7ruved that this approximation is restric- reflects population dynamics in an insect

rive and not applicable in general. In species whose members pass through a sequence

this article we suggest suitable improved of stages, and in which later stages

approximations which are less restrictive cannibalize earlier stages. Solution

and more 'closer' to the exact value. Some trajectories must converge when the number %
applications of power spectral estimation cf stages is four or less. oe conjeclure
algorithm with stochastic coefficients are that convergence always bbains but, wnen S
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SEKO, JOSEPH T. M.S. ATLANTA UNIVERSITY, 1986

,--

THE USE OF LAGRANGE MULTIPLIERS AND KUHN-TUCKER'S
THEORY IN OPTIMIZATION PROBLEMS

Advisor: Professor Negash Medhin

Thesis dated November, 1986

Lagrange multipliers, penalty methods, and Kuhn-

Tucker's theory are some important mathematical tools used

in optimization problems. These tools are discussed so

that one can appreciate the current areas of optimization

research. Moreover, since extensive research work exists

for linear optimization problems, only nonlinear

applications are discussed.
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In Chapter one of this report we define Fredholm integral

equations of the second kind, Volterra integral equations of

the second kind and differentiate between the two of them

and explain why integral equations are important. In Chapter

two we discuss numerical procedures to integral equations.

The equations we used in this report are of two types: (i)

Fredholm equations and (2) Volterra equations. The methods

we used for Fredholm equations are: (i) Simpson's rule, (ii)

Trapezoidal rule, (iii) Weddle's rule, (iv) the Collocation

method, and (iv) the Galerkin method.

For Volterra equations we used the successive approxima-

tion method with (i) Simpson's rule, (ii) Trapezoidal rule

and (iii) Weddle's rule to evaluate the integrals.

In both Fredholm and Volterra integral equations we have

the forcing term to be random. Our simulation results are

presented in tables and graphs. V.'
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